B.M.S COLLEGE FOR WOMEN, AUTONOMOUS

BENGALURU – 560004 SEMESTER END EXAMINATION – MARCH/APRIL- 2023

B.Sc. in Mathematics – III Semester

REAL ANALYSIS- I AND ORDINARY DIFFERENTIAL EQUATIONS (NEP Scheme 2021-22 onwards)

Course Code: MAT3DSC03

Duration: 2 ½ Hours

QP Code: 3015

Max marks: 60

Instructions: Answer all the sections.

I. Answer any SIX Questions.

(6X2=12)

- 1. Define bounded sequence
- 2. Find the limit of the sequence $\frac{3n-3}{4n+3}$
- 3. Test the convergence of the series $\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \dots \infty$
- 4. State Raabes's test for convergence
- 5. Show that the equation $(x^2 ay)dx + (y^2 ax)dy = 0$ is exact

6. Solve
$$\frac{dy}{dx} + 2xy = 2e^{-x^2}$$

- 7. Find the particular integral of $(D^2 4D + 3)y = e^x$
- 8. Solve $(D^2 7D + 6)y = 0$

II. Answer any FOUR Questions.

(4X6=24)

- 1. Prove that every convergent sequence is bounded. Is the converse true. Justify your Answer.
- 2. Discuss the behaviour of the sequence $\{n^{1/n}\}$
- 3. Show that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$, $x_{n+1} = \sqrt{7 + x_n}$ converges to the positive root of $x^2 x 7 = 0$
- 4. State Cauchy's root for a series of positive terms.
- 5. Discuss the convergence of the series $\frac{2}{3} + \frac{2.4}{3.5} + \frac{2.4.6}{3.5.7} + \dots \infty$
- 6. Sum to infinity $1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \dots$

1. Solve
$$p^2 + 2py \cot x - y^2 = 0$$

2. Solve
$$\frac{dy}{dx} + \frac{3x^2}{1+x^3}y = \frac{\sin^2 x}{1+x^3}$$

- 3. Find the orthogonal trajectories of family of parabolas $y^2 = 4ax$
- 4. Solve $(D^2 + 2D + 1)y = 2e^{2x}$
- 5. Solve the simultaneous equations $\frac{dx}{dt} + 7x y = 0 & \frac{dy}{dt} + 2x + 5y = 0$
- 6. Solve $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$ by the method of variation of parameters
